Fluid balance in the critically ill child with dengue – Too much too little?

Professor Lucy Lum
Universiti Malaya
ASMIC 2018
21-23 Sept
Dengue Cases Reported in the Week 36/2018
(2nd September until 8th September 2018)

<table>
<thead>
<tr>
<th>No.</th>
<th>States</th>
<th>No. of dengue cases and deaths reported</th>
<th>Cumulative dengue cases until week 36/2018</th>
<th>Cumulative dengue cases until week 36/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cases</td>
<td>Deaths</td>
<td>Cases</td>
</tr>
<tr>
<td>1</td>
<td>Perlis</td>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Kedah</td>
<td>21</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>P. Pinang</td>
<td>144</td>
<td>0</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>Perak</td>
<td>33</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Selangor</td>
<td>874</td>
<td>1</td>
<td>913</td>
</tr>
<tr>
<td>6</td>
<td>WP KL & Putrajaya</td>
<td>202</td>
<td>1</td>
<td>148</td>
</tr>
<tr>
<td>7</td>
<td>N. Sembilan</td>
<td>41</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Melaka</td>
<td>20</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Johor</td>
<td>92</td>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>Pahang</td>
<td>20</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>Terengganu</td>
<td>20</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Kelantan</td>
<td>71</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>Sarawak</td>
<td>12</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Sabah</td>
<td>71</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>15</td>
<td>WP Labuan</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

CFR 0.22 in 2017
0.15 in 2018
Lecture Contents:

• Dynamic disease – Self-limiting capillary leak syndrome

• Phases of fluid resuscitation

• Targets and evaluation of fluid responsiveness

• Strategic management of Re-shock
After the incubation period, the illness begins abruptly.

It is characterized by 3 phases:

Febrile phase – commences at symptom onset

Critical phase – commences around time of defervescence* - **PLASMA LEAKAGE**

* Defined as when body temperature drops to less than 38°C and remains below this level.

Recovery phase – commences when **plasma leakage resolves**
Pathophysiology of Severe Dengue

- Timing of severe manifestations at height of inflammatory host response suggest immune driven phenomenon
Endothelium-glycocalyx complex

Dengue shock: Rapid capillary leak of smaller proteins such as albumin into interstitial spaces
Fluid flux = \((P_c - P_{is}) - \sigma (\pi_c - \pi_{is}) \)

= Hydrostatic pressure – \(\sigma \) (oncotic pressure)

\(\propto \) Hydrostatic pressure
Fluid accumulation with respiratory distress*

- Age < 15 years – AHR 3.85
- Referral from an inpatient facility
- Longer Duration of IV fluid therapy – AHR 1.66 per additional day
- Amount of IVF in the preceding 24 hours – AHR 1.18 per 10 ml/kg
- IV fluid bolus in the preceding 24 hours – AHR 2.9.

- Each were independent risks factors

*Vascular leakage in dengue – clinical spectrum and influence of parenteral fluid therapy, 2016, TMIH
Why the need to balance carefully –

<table>
<thead>
<tr>
<th>Too much fluid</th>
<th>Too little fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vascular leak syndrome</td>
<td>• Prolonged shock</td>
</tr>
<tr>
<td>• Fluid accumulation – respiratory distress</td>
<td>• Organ impairment</td>
</tr>
<tr>
<td>• More organ impairment</td>
<td>• Severe bleeding – can be difficult to recognize</td>
</tr>
<tr>
<td>• Bleeding tendencies and peripheral destruction of platelets – chest drains may cause bleeding</td>
<td>• Refractory shock</td>
</tr>
</tbody>
</table>
Indications of IV fluid therapy

- Resuscitation Therapy
- Rehydration Therapy – Deficit
- Replacement Therapy – on-going abnormal losses
- Maintenance Therapy – “Just enough” IV fluid for metabolic rate – Oral + Parenteral
Stages of fluid resuscitation:

- Rescue
- Stabilization
- Optimization
- De-escalation

Four phases of intravenous fluid therapy: a conceptual model
E. A. Hoste, BJA 2014
Four phases of intravenous fluid therapy: a conceptual model

E. A. Hoste, BJA 2014

<table>
<thead>
<tr>
<th></th>
<th>Rescue</th>
<th>Optimization</th>
<th>Stabilization</th>
<th>De-escalation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles</td>
<td>Life-Saving</td>
<td>Organ rescue</td>
<td>Organ support</td>
<td>Organ recovery</td>
</tr>
<tr>
<td>Goals</td>
<td>Correct shock</td>
<td>Optimize and</td>
<td>Aim for zero or negative fluid</td>
<td>Mobilize fluid accumulated – negative fluid</td>
</tr>
<tr>
<td></td>
<td>(Macrocirculation) maintain tissue</td>
<td>balance</td>
<td>balance</td>
<td>balance</td>
</tr>
<tr>
<td>Time</td>
<td>Usually minutes</td>
<td>Hours</td>
<td>Days</td>
<td>Days to weeks</td>
</tr>
<tr>
<td>Phenotype</td>
<td>Severe shock</td>
<td>Unstable</td>
<td>Stable</td>
<td>Recovering</td>
</tr>
<tr>
<td>Fluid therapy</td>
<td>Rapid boluses</td>
<td>Titrate fluid</td>
<td>Minimal maintenance infusion only if</td>
<td>Oral intake if possible. Avoid unnecessary i.v.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>infusion,</td>
<td>oral intake inadequate</td>
<td>fluids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservative use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes</td>
<td>10 to 20 ml/kg</td>
<td>5 - 8 ml/kg</td>
<td>Maintenance fluid</td>
<td>Reduce / discontinue IV</td>
</tr>
</tbody>
</table>
Group C: Emergency treatment – Summary

Compensated shock (systolic pressure maintained + reduced perfusion)

- **Start isotonic crystalloid therapy**
 - 5–10 ml/kg/hr (adult) or
 - 10–20 ml/kg (child) for 1 hour

 → **Improved**
 → **REASSESS**

- **Step-wise reduction of IV crystalloids**
 - 5–7 ml/kg/hr for 1–2 hours
 - 3–5 ml/kg/hr for 2–4 hours
 - 2–3 ml/kg/hr for 2–4 hours

 → **Further boluses may be required**

- **Clinical improvement or improved oral intake, reduce fluids step-wise**

 → **Stop IV fluids at 24–48 hours**

Hypotensive shock

- **Start isotonic crystalloid or colloid therapy**
 - 10–20 ml/kg (adult) or
 - 20 ml/kg (child) over 15–30 min

 → **REASSESS**

- **Step-wise reduction of IV crystalloids**
 - 5–7 ml/kg/hr for 1–2 hours
 - 3–5 ml/kg/hr for 2–4 hours
 - 2–3 ml/kg/hr for 2–4 hours

 → **Further boluses may be required**

- **Clinical improvement or improved oral intake, reduce fluids step-wise**

 → **Stop IV fluids at 24–48 hours**

* Reassess the patient’s clinical condition: vital signs, pulse volume, capillary refill time and temperature of extremities; decide on the situation. ** Colloids are preferable if the patient has already received several boluses of crystalloid.
Fluid titration in compensated dengue shock

IV Fluid management (mL/kg/hr)

- **Rescue**: 10 ml in 1 hour
- **Optimization**:
 - 5-8 ml in 2-3 hours
 - 4-7 ml in 4-7 hours
 - 3-5 ml in 8-11 hours
- **Stabilization**: 2-4 ml in 12-24 hours
- **De-escalation**: 2-4 ml in 24-48 hours
- **STOP**: > 48 hours
Fluid titration in hypotensive dengue shock

- **Rescue**: 20 ml (15 min)
- **Optimization**: 10 - 15 ml (1 hr)
- **Stabilization**: 7 - 10 ml (2 - 3 hr)
- **De-escalation**: 5 - 7 ml (4 - 7 hr)
- **Stop**: 3 - 5 ml (8 - 11 hr)
- **48 h**: 3 - 4 ml (12 - 24 hr)
- **25 - 36 h**: 1 - 3 ml (24 - 48 hr)
6 yr-old, Admitted on Day 5 of illness,

Vomiting 6 times, Temp 37°C, HR 168/min. At admission, HCT 36%. Encouraged oral fluids, no IV drip

14 hrs later:
Poor perfusion,
HCT increased to 47%

Bolus 20 ml/kg saline over 1 hr,

Post bolus, still poor perfusion; Repeat HCT 47%

Supine A-P CXR, post bolus 20 ml/kg saline

How would you manage at this stage?
Group C: Emergency treatment – Summary

Compensated shock (systolic pressure maintained + reduced perfusion)

- Start isotonic crystalloid therapy 5–10 ml/kg/hr (adult) or 10–20 ml/kg (child) for 1 hour
- Step-wise reduction of IV crystalloids:
 - 5–7 ml/kg/hr for 1–2 hours
 - 3–5 ml/kg/hr for 2–4 hours
 - 2–3 ml/kg/hr for 2–4 hours
- Further boluses may be required
- Clinical improvement or improved oral intake, reduce fluids step-wise
- Stop IV fluids at 24–48 hours

Increasing or high HCT

- Crystalloids (2nd bolus) or colloids** 10–20 ml/kg/hr for 1 hr
- If improved:
 - Reduce IV crystalloids to 7–10 ml/kg/hr for 1–2 hours
 - Continue step-wise reduction of IVF

Check haematocrit

Not improved

- If Improved:
 - Reduce IV crystalloids to 7–10 ml/kg/hr for 1–2 hours
 - Continue step-wise reduction with crystalloids

Increasing or high HCT

- Colloids** 10 ml/kg for 30–60 min
- If improved:
 - Reduce IV crystalloids to 7–10 ml/kg/hr for 1–2 hours
 - Continue step-wise reduction with crystalloids

Compensated shock

Hypotensive shock

- Start isotonic crystalloid or colloid therapy 10–20 ml/kg (adult) or 20 ml/kg (child) over 15–30 min

Try to obtain CBC, HCT, GXM & other bloods before fluid resuscitation

Increasing or high HCT

- IV crystalloid or colloid 10 ml/kg/hr for 1 hours
- Step-wise reduction of IV crystalloids:
 - 5–7 ml/kg/hr for 1–2 hours
 - 3–5 ml/kg/hr for 2–4 hours
 - 2–3 ml/kg/hr for 2–4 hours
- Further boluses may be required
- Clinical improvement or improved oral intake, reduce fluids step-wise
- Stop IV fluids at 24–48 hours

* Reassess the patient’s clinical condition: vital signs, pulse volume, capillary refill time and temperature of extremities; decide on the situation.
** Colloids are preferable if the patient has already received several boluses of crystalloid.
Colloid therapy in dengue shock

When should colloids be given?

- Hypotensive shock\(^1,2,3\)
- **Re-shock** – 2nd or 3rd shock and onwards
- After >20 to 30 ml/kg of crystalloids
- HCT does not decrease after crystalloid administration in shock state

NOTE: If **NO** clinical improvement with **REDUCED HCT**, suspect **significant occult bleeding**

DOSE: Limited to 30 to 50 ml/kg/day

Fluid-sparing strategy

Chest x-ray, Case 2 - 16 kg

FLUID ACCUMULATION:
Extra-vascular compartment increases
Intravascular compartment is small

Large Pleural Effusion

Small cardio-thoracic ratio
Right heart border (Right Atrium) is hardly visible

Severe metabolic acidosis worsens respiratory distress caused by fluid accumulation

What other investigations that will guide fluid management?

Hematocrit – 36%, Platelet – 6

BP 84/56 mmHg, HR 166/m, cold extremities, feeble pulse
IV since admission (45 hours ago) 4600 ml, Urine 360 ml, Balance +4240 ml

pH 6.9, Bic 8.4, BE – 19,
Lactate 9.7
* Reassess the patient's clinical condition: vital signs, pulse volume, capillary refill time and temperature of extremities; decide on the situation.

** Colloids are preferable if the patient has already received several boluses of crystalloid.
Clinical and laboratory data and outcome of severe hemorrhage in dengue shock syndrome

<table>
<thead>
<tr>
<th>Clinical/laboratory data</th>
<th>Group 1 (significant hemorrhage)</th>
<th>Group 2 (no/mild hemorrhage)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)°</td>
<td>7.0 (0.3–12.0)</td>
<td>6.0 (0.2–11.7)</td>
<td>.801</td>
</tr>
<tr>
<td>Hypotension (%)</td>
<td>68.1</td>
<td>37.8</td>
<td>.010</td>
</tr>
<tr>
<td>Mottling (%)</td>
<td>45.0</td>
<td>22.0</td>
<td>.027</td>
</tr>
<tr>
<td>Encephalopathy (%)</td>
<td>63.3</td>
<td>28.3</td>
<td>.002</td>
</tr>
<tr>
<td>Liver failure (%)</td>
<td>63.6</td>
<td>22.0</td>
<td>.000</td>
</tr>
<tr>
<td>Abnormal glycemia (%)</td>
<td>61.9</td>
<td>17.4</td>
<td>.000</td>
</tr>
<tr>
<td>Duration of shock (h)°</td>
<td>12.0 (2.0–24.0)</td>
<td>4.0 (0.0–10.2)</td>
<td>.000</td>
</tr>
<tr>
<td>Platelet count at admission (×10^9/L)°</td>
<td>60.5 (7.0–219.0)</td>
<td>61.0 (11.5–187.9)</td>
<td>.902</td>
</tr>
<tr>
<td>Hematocrit at admission (%)</td>
<td>39.5 (14.0–64.0)</td>
<td>45.0 (31.3–60.0)</td>
<td>.032</td>
</tr>
<tr>
<td>Lowest platelet count°</td>
<td>17.0 (7.0–90.0)</td>
<td>22.0 (5.3–99.5)</td>
<td>.227</td>
</tr>
<tr>
<td>Prothrombin time ratio°</td>
<td>2.16 (1.0–4.0)</td>
<td>1.19 (1.0–2.4)</td>
<td>.000</td>
</tr>
<tr>
<td>Partial thromboplastin time (s)°</td>
<td>120.0 (48.5–200.0)</td>
<td>72.2 (36.8–182.8)</td>
<td>.001</td>
</tr>
<tr>
<td>Serum creatinine (μmol/L) at admission°</td>
<td>198.0 (448.0–938.0)</td>
<td>74.0 (24.5–637.7)</td>
<td>.022</td>
</tr>
</tbody>
</table>

*Data shown are median (2.5–97.5 percentile).
Number of deaths was 6 of 22 for group 1; none for group 2 (P = .001).

J Pediatr 2002;140:629-31
Multivariate logistic regression analysis of clinical and laboratory features of severe hemorrhage in dengue shock syndrome

<table>
<thead>
<tr>
<th>Clinical and laboratory features</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>β</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy</td>
<td>0.01</td>
<td>0.00–41.89</td>
<td>-4.40</td>
<td>.289</td>
</tr>
<tr>
<td>Mottling</td>
<td>0.08</td>
<td>0.00–15.50</td>
<td>-2.50</td>
<td>.350</td>
</tr>
<tr>
<td>Hypotension</td>
<td>2.28</td>
<td>0.18–28.19</td>
<td>0.08</td>
<td>.521</td>
</tr>
<tr>
<td>Duration of shock</td>
<td>2.11</td>
<td>1.13–3.92</td>
<td>0.75</td>
<td>.019</td>
</tr>
<tr>
<td>Hematocrit at admission</td>
<td>0.72</td>
<td>0.55–0.95</td>
<td>-0.33</td>
<td>.020</td>
</tr>
<tr>
<td>Liver failure</td>
<td>1.8 × 10^4</td>
<td>0.50–6.80 × 10^8</td>
<td>9.83</td>
<td>.067</td>
</tr>
<tr>
<td>Renal failure at admission</td>
<td>1.44</td>
<td>0.10–249.90</td>
<td>0.37</td>
<td>.889</td>
</tr>
<tr>
<td>Prothrombin time ratio</td>
<td>0.10</td>
<td>0.00–46.89</td>
<td>-2.30</td>
<td>.454</td>
</tr>
<tr>
<td>Abnormal glycemia</td>
<td>2.71</td>
<td>0.22–33.68</td>
<td>1.00</td>
<td>.437</td>
</tr>
<tr>
<td>Partial thromboplastin time</td>
<td>1.03</td>
<td>0.98–1.07</td>
<td>0.03</td>
<td>.262</td>
</tr>
</tbody>
</table>
Pearls: How to recognize severe bleeding

Determine if the patient has **UNSTABLE** haemodynamic status

Any **ONE** of the following:

1. Persistent and/or severe overt bleeding, regardless of the HCT level
2. A decreased HCT *after* fluid resuscitation, especially with colloids
3. Hypotensive shock with low/normal HCT *before* fluid resuscitation
4. Refractory shock
5. Persistent metabolic acidosis

Group and **CROSS MATCH** for all dengue SHOCK (esp Hypotensive) patients at admission

Urgent Transfusion of Fresh blood
Monitoring of hemodynamic responses to IV fluid boluses – fluid responsiveness

Frequent assessment – Targets and Safety limits

- Clinical assessment
- Hematological & Biochemical: Serial Hct, lactate (Yacoub et al, 2017), SvO$_2$
- Radiological – point of care ultrasound (POCUS) of IVC (Finnerty et al, 2017)
- Left ventricle end diastolic volume (LVEDd)

- Fluid balance & Fluid accumulation

- Fluid overload – increased mortality, prolonged ventilation and acute kidney injury

Alobaidi, et al, JAMA Pediatr 2018
Payen et al, Crit Care 2008
Vaara et al, Crit Care 2012
Prevention of Fluid overload in dengue

Causes
- *Cumulative balance > 100 ml/kg
- IV fluid therapy in Febrile phase
- Recurrent shock – crystalloids
 Not changing to colloid solution
- Transfusion of platelet count, FFP
- Delayed recognition of shock
 Delayed recognition of bleeding
- Continuation of IV fluid beyond critical phase

Prevention
- Oral or minimal IV fluid during febrile phase
- Frequent assessment
- Recognise early shock
- Change to colloid early
- Suspect occult bleeding
- Urgent blood transfusion
- Step-wise reduction of IV Infusion
- Stop IV infusion by 48 hours

[(Total Fluid Intake – Total Fluid Output in Liters) / Adm Weight in Kilograms] × 100.
Summary of IV fluid therapy in dengue

Inadequate
- Hypovolaemia
- Compensated shock
- Hypotensive shock
 - Bleeding
 - DIC
 - Multi-organ failure

JUST ENOUGH
- Improved circulation and tissue perfusion
 - Capillary refill <2 seconds
 - Normal heart rate
 - Normal blood pressure
 - Normal pulse pressure
 - Urine 0.5ml/kg/hr
 - ↓ HCT to normal
 - Improving acid-base

Excessive
- Fluid overload:
 - Pulmonary oedema
 - Respiratory distress
 - Worsening pleural effusion and ascites
 - Clinical deterioration
More research need ...

- The fluid-overloaded dengue shock syndrome
- Recurrent shock - What is the most suitable fluid?
- What is the most suitable colloid solution
- Is starch solution that bad?
- What is the role of oral fluids during the critical phase?
Thank you for your attention!
Transition from febrile phase to critical phase

- Usually day 4 to day 7 of illness
- Could be as early as day 3 or as late as day 7 or 8
- Coincides with defervescence

Development of warning signs:
Identify dengue patients already in shock or at risk of developing shock

Clinical Warning Signs

1. **Severe abdominal pain**
2. **Persistent vomiting**
3. **Lethargy; restlessness**
4. Mucosal bleed
5. Liver enlargement >2cm
6. Clinical fluid accumulation

Laboratory Warning Signs

1. Leukopenia
2. Rapid decrease platelet count
3. Rising haematocrit
• *Alle Dinge sind Gift, und nichts ist ohne Gift, allein die Dosis macht dass ein Ding kein Gift ist.*

All things are poison, and nothing is without poison, the dosage alone makes it so a thing is not a poison.
Summary of Proactive Measures

• Team training – knowledge, rehearse skills; from triage to ICU team – recognition, monitoring, fluid therapy.

• Dengue Shock: Minute-to-minute evaluation and decision-making to achieve and then maintain hemodynamic equilibrium

• Co-morbid conditions could be worse than the dengue illness

• Handover from one team to another, across departments: Gaps in continuity of care - Change of work shift, on-call team
• In patients with vascular leakage, IV fluid therapy can aggravate fluid accumulation and lead to respiratory distress
Fluid therapy and phases of dengue

Incubation period

Febrile Phase
- Viraemia: headache, nausea, anorexia, myalgia, body ache and rash,

Critical Phase
- Resus Fluid + Oral + IV therapy

Recovery Phase
- Oral fluid therapy

Fluid therapy
- Oral fluid therapy

Days
0 1 2 3 4 6 8 10